نموذج المتوسط المتحرك القريب


يمكن تقدير عمليات خطأ متوسط ​​الانحدار الذاتي (أخطاء أرما) والنماذج الأخرى التي تنطوي على تأخر في عبارات الخطأ باستخدام عبارات فيت والمحاكاة أو التنبؤ باستخدام عبارات سولف. وغالبا ما تستخدم نماذج أرما لعملية الخطأ للنماذج ذات المخلفات ذات الصلة. يمكن استخدام الماكرو أر لتحديد نماذج مع عمليات خطأ الانحدار الذاتي. يمكن استخدام ماكرو ما لتحديد النماذج مع عمليات الخطأ المتوسط ​​المتوسط. أخطاء الانحدار الذاتي نموذج يحتوي على أخطاء الانحدار الذاتي من الدرجة الأولى، أر (1)، لديه النموذج أثناء عملية خطأ أر (2) يحتوي على النموذج وهكذا دواليك لعمليات أعلى ترتيب. لاحظ أن s مستقلة وموزعة بشكل متطابق ولها قيمة متوقعة من 0. مثال على نموذج مع عنصر أر (2) هو وهكذا دواليك لعمليات أعلى ترتيب. على سبيل المثال، يمكنك كتابة نموذج الانحدار الخطي بسيط مع ما (2) المتوسط ​​المتحرك الأخطاء حيث حيث MA1 و MA2 هي المعلمات المتوسط ​​المتحرك. لاحظ أن RESID. Y يتم تعريفها تلقائيا بواسطة بروك موديل كما يجب استخدام الدالة زلاغ لمناذج ما لاقتطاع عودة العطل. ويضمن ذلك أن تبدأ الأخطاء المتأخرة عند الصفر في طور التأخر ولا تنشر القيم الناقصة عندما تكون متغيرات فترة التأخر مفقودة، وتضمن أن تكون الأخطاء المستقبلية صفرا وليس مفقودة أثناء المحاكاة أو التنبؤ. للحصول على تفاصيل حول وظائف التأخر، راجع القسم لاغ لوجيك. هذا النموذج المكتوب باستخدام ماكرو ما هو كما يلي: النموذج العام لنماذج أرما العملية أرما (p، q) العامة لها النموذج التالي يمكن تحديد نموذج أرما (p، q) كما يلي: حيث أر i و ما j تمثل ومعدلات الانحدار الذاتي والمتوسط ​​المتحرك لمختلف الفواصل الزمنية. يمكنك استخدام أي أسماء تريدها لهذه المتغيرات، وهناك العديد من الطرق المكافئة التي يمكن أن تكون مكتوبة المواصفات. ويمكن أيضا أن يتم تقدير العمليات أرما ناقلات مع بروك نموذج. على سبيل المثال، يمكن تحديد عملية أر (1) ثنائية المتغير لأخطاء المتغيرين الداخليين Y1 و Y2 على النحو التالي: مشكلات التقارب مع نماذج أرما يمكن أن يصعب تقدير نماذج أرما. إذا لم تكن تقديرات المعلمة ضمن النطاق المناسب، تنمو النماذج المتبقية للمتوسط ​​المتحرك بشكل مطرد. ويمكن أن تكون المخلفات المحسوبة للملاحظات اللاحقة كبيرة جدا أو يمكن تجاوزها. ويمكن أن يحدث ذلك إما بسبب استخدام قيم بدء غير ملائمة أو بسبب تكرارات التكرارات بعيدا عن القيم المعقولة. يجب استخدام العناية في اختيار قيم البدء لمعلمات أرما. وتبدأ قيم البداية التي تبلغ 0.001 بالنسبة إلى معلمات أرما إذا كان النموذج يتلاءم مع البيانات جيدا وأن المشكلة مكيفة جيدا. لاحظ أن نموذج ما يمكن في كثير من الأحيان تقريب من قبل نموذج أر عالية الترتيب، والعكس بالعكس. وهذا يمكن أن يؤدي إلى علاقة خطية متداخلة عالية في نماذج أرما مختلطة، والتي بدورها يمكن أن يسبب سوء تكييف خطيرة في الحسابات وعدم استقرار تقديرات المعلمة. إذا كان لديك مشاكل التقارب أثناء تقدير نموذج مع عمليات خطأ أرما، في محاولة لتقدير في الخطوات. أولا، استخدم بيان فيت لتقدير فقط المعلمات الهيكلية مع المعلمات أرما التي عقدت إلى الصفر (أو إلى تقديرات معقولة معقولة إن وجدت). بعد ذلك، استخدم عبارة فيت أخرى لتقدير معلمات أرما فقط، باستخدام قيم المعلمات الهيكلية من التشغيل الأول. وبما أن قيم المعلمات الهيكلية من المرجح أن تكون قريبة من تقديراتها النهائية، فإن تقديرات المعلمة أرما قد تتلاقى الآن. وأخيرا، استخدم بيان فيت آخر لإنتاج تقديرات متزامنة لجميع المعلمات. وبما أن القيم الأولية للمعلمات من المرجح أن تكون قريبة جدا من تقديراتها النهائية المشتركة، ينبغي أن تتلاقى التقديرات بسرعة إذا كان النموذج مناسبا للبيانات. الشروط المبدئية أر يمكن وضع الفواصل الأولية لشروط الخطأ في نماذج أر (p) بطرق مختلفة. طرق بدء تشغيل خطأ الانحدار الذاتي التي تدعمها إجراءات ساسيتس هي التالية: المربعات الصغرى المشروطة (إجراءات أريما و موديل) المربعات الصغرى غير المشروطة (أوتوريغ، أريما، وإجراءات موديل) أقصى احتمالات (أوتوريغ، أريما، وإجراءات موديل) يول ووكر (أوتوريغ الإجراء الوحيد) هيلدريث-لو، الذي يحذف أول ملاحظات p (إجراء نموذج فقط) انظر الفصل 8، الإجراء أوتوريغ، للحصول على شرح ومناقشة مزايا مختلف أساليب بدء التشغيل أر (p). يمكن إجراء كلس، أولس، مل، و أوليتيزاتيونس من قبل بروك نموذج. بالنسبة إلى أخطاء أر (1)، يمكن إنتاج هذه التهيئة كما هو مبين في الجدول 18.2. هذه الطرق تعادل في عينات كبيرة. الجدول 18.2 التهيئة التي يتم إجراؤها بواسطة بروك النموذجي: أر (1) الأخطاء يمكن أيضا أن تكون الفواصل الأولية لشروط الخطأ في نماذج ما (q) نموذجا بطرق مختلفة. يتم دعم نماذج بدء خطأ المتوسط ​​المتوسط ​​التالية من خلال إجراءات أريما و موديل: مربعات أقل مشروطة المربعات الصغرى الشرطية طريقة المربعات الصغرى الشرطية لتقدير عبارات الخطأ المتوسط ​​المتوسط ​​ليست الأمثل لأنه يتجاهل مشكلة بدء التشغيل. وهذا يقلل من كفاءة التقديرات، على الرغم من أنها تظل غير متحيزة. ويفترض أن المخلفات الأولية المتأخرة، التي تمتد قبل بدء البيانات، هي صفر، قيمتها المتوقعة غير المشروطة. ويحدث هذا فرقا بين هذه البقايا ومتبقي المربعات الصغرى المعمم في التباين المتوسط ​​المتحرك، الذي يستمر، خلافا لنموذج الانحدار الذاتي، من خلال مجموعة البيانات. وعادة ما يتقارب هذا الاختلاف بسرعة إلى 0، ولكن بالنسبة لعمليات المتوسط ​​المتحرك غير القابلة للتحويل تقريبا فإن التقارب بطيء جدا. لتقليل هذه المشكلة، يجب أن يكون لديك الكثير من البيانات، ويجب أن تكون تقديرات معامل المتوسط ​​المتحرك ضمن النطاق القابل للانعكاس. ويمكن تصحيح هذه المشكلة على حساب كتابة برنامج أكثر تعقيدا. ويمكن إنتاج تقديرات المربعات الصغرى غير المشروطة لعملية ما (1) من خلال تحديد النموذج على النحو التالي: يمكن أن يكون من الصعب تقدير المتوسط ​​المتحرك للأخطاء. يجب أن تفكر في استخدام تقريب أر (p) لعملية المتوسط ​​المتحرك. ويمكن عادة أن تكون عملية المتوسط ​​المتحرك مقاربة بشكل جيد من خلال عملية الانحدار الذاتي إذا لم يتم تمهيد أو اختلاف البيانات. الماكرو أر أر ساس الماكرو أر يولد بيانات البرمجة ل بروك موديل لنماذج الانحدار الذاتي. الماكرو أر هو جزء من برنامج ساسيتس، ولا حاجة إلى تعيين خيارات خاصة لاستخدام الماكرو. يمكن تطبيق عملية الانحدار الذاتي على أخطاء المعادلة الهيكلية أو إلى سلسلة الذاتية نفسها. يمكن استخدام الماكرو أر للأنواع التالية من الانحدار الذاتي: الانحدار الذاتي غير المقيد الانحدار الذاتي المتجه المقيد الانحدار الذاتي المتغير ونيفاريت لرسم نموذج الخطأ في المعادلة كعملية الانحدار الذاتي، استخدم العبارة التالية بعد المعادلة: على سبيل المثال، لنفترض أن Y هو الدالة الخطية ل X1 و X2 و أر (2). يمكنك كتابة هذا النموذج على النحو التالي: يجب أن تأتي المكالمات إلى أر بعد كل المعادلات التي تنطبق عليها العملية. ويؤدي الاستدعاء الكلي السابق، أر (y، 2)، إلى عرض البيانات المبينة في خرج ليست في الشكل 18.58. الشكل 18.58 ليست خیار الخیار لنموذج أر (2) متغیرات أر مسبقة الصیانة ھي متغیرات برنامجیة مؤقتة مستخدمة بحیث تکون تأخیرات البقایا ھي البقایا الصحیحة ولیس تلك التي تم إعادة تعریفھا بواسطة ھذه المعادلة. لاحظ أن هذا يعادل البيانات المكتوبة بشكل صريح في المقطع نموذج عام لنماذج أرما. يمكنك أيضا تقييد المعلمات الانحدار الذاتي إلى صفر عند التأخر المحدد. على سبيل المثال، إذا أردت معلمات الانحدار الذاتي عند الفترات الزمنية 1 و 12 و 13، يمكنك استخدام العبارات التالية: تولد هذه العبارات الإخراج الموضح في الشكل 18.59. الشكل 18.59 ليست مخرجات الخيار لنموذج أر مع تأخيرات في 1 و 12 و 13 قائمة إجراءات نموذج قائمة برمجية البرمجة البرمجية المجمعة كما تم تحليلها PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y بريد. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - بيردي) yl12 ZLAG12 (y - بيردي) yl13 ZLAG13 (y - بيردي) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y هناك الاختلافات على طريقة المربعات الصغرى المشروطة، اعتمادا على ما إذا كانت الملاحظات في بداية السلسلة تستخدم لتسخين عملية أر. وبشكل افتراضي، تستخدم طريقة المربعات الصغرى المشروطة أر جميع الملاحظات وتفترض الأصفار للتخلف الأولي لشروط الانحدار الذاتي. باستخدام الخيار M، يمكنك طلب أن أر استخدام المربعات الصغرى غير المشروطة (أولس) أو أقصى احتمال (مل) طريقة بدلا من ذلك. على سبيل المثال، يتم عرض مناقشات هذه الطرق في القسم أر الشروط الأولية. وباستخدام الخيار مكلس n، يمكنك طلب استخدام أول ملاحظات n لحساب تقديرات الفترات الزمنية الأولية للانحراف الذاتي. في هذه الحالة، يبدأ التحليل بالملاحظة n 1. على سبيل المثال: يمكنك استخدام الماكرو أر لتطبيق نموذج الانحدار الذاتي على المتغير الداخلي، بدلا من مصطلح الخطأ، وذلك باستخدام الخيار تيبيف. على سبيل المثال، إذا كنت ترغب في إضافة الفواصل الخمسة الماضية من Y إلى المعادلة في المثال السابق، يمكنك استخدام أر لإنشاء المعلمات والتخلف باستخدام العبارات التالية: البيانات السابقة توليد الإخراج هو مبين في الشكل 18.60. الشكل 18.60 ليست خرج الخوارزمية لنموذج أر من Y يتنبأ هذا النموذج Y بمزيج خطي من X1 و X2 و اعتراض وقيم Y في أحدث خمس فترات. استخلاص الانحدار غير المقيد للناقلات لنموذج مصطلحات الخطأ لمجموعة من المعادلات كعملية متجه الانحدار الذاتي، استخدم النموذج التالي من ماكرو أر بعد المعادلات: قيمة اسم العملية هي أي اسم تقدمه أر لاستخدامه في صنع أسماء الانحدار الذاتي المعلمات. يمكنك استخدام ماكرو أر لنموذج عدة عمليات أر مختلفة لمجموعات مختلفة من المعادلات باستخدام أسماء عملية مختلفة لكل مجموعة. يضمن اسم العملية أن أسماء المتغيرات المستخدمة فريدة. استخدم قيمة اسم عملية قصيرة للعملية إذا كانت تقديرات المعامل ستكتب إلى مجموعة بيانات الإخراج. يحاول الماكرو أر إنشاء أسماء معلمات أقل من أو يساوي ثمانية أحرف، ولكن هذا يقتصر طول العملية. والذي يستخدم كبادئة لأسماء معلمات أر. القيمة فاريابلليست هي قائمة المتغيرات الذاتية للمعادلات. على سبيل المثال، لنفترض أن أخطاء المعادلات Y1 و Y2 و Y3 يتم إنشاؤها بواسطة عملية الانحدار الذاتي للناقلات من الدرجة الثانية. يمكنك استخدام العبارات التالية: التي تولد التالية ل Y1 و التعليمات البرمجية مشابهة ل Y2 و Y3: يمكن استخدام الأسلوب المربعات الصغرى الشرطية (مكلس أو مكلس n) لعمليات المتجه. يمكنك أيضا استخدام نفس النموذج مع القيود التي مصفوفة معامل تكون 0 في التأخر المحدد. على سبيل المثال، تنطبق العبارات التالية عملية متجه من الدرجة الثالثة على أخطاء المعادلة مع كل المعاملات عند التأخر 2 المقيدة إلى 0 ومع المعاملات عند الفواصل الزمنية 1 و 3 غير المقيدة: يمكنك نموذج السلسلة الثلاثية Y1Y3 باعتبارها عملية الانحدار الذاتي المتجه في المتغيرات بدلا من الأخطاء باستخدام الخيار تيبيف. إذا كنت ترغب في نموذج Y1Y3 كدالة للقيم الماضية من Y1Y3 وبعض المتغيرات الخارجية أو الثوابت، يمكنك استخدام أر لتوليد البيانات لفترات التأخر. اكتب معادلة لكل متغير للجزء نونوتريغريسيف من النموذج ثم قم باستدعاء أر مع الخيار تيبيف. على سبيل المثال، يمكن أن يكون الجزء غير التخريطي للنموذج دالة للمتغيرات الخارجية، أو يمكن أن يكون معلمات اعتراض. إذا لم تكن هناك مكونات خارجية لنموذج الانحدار الذاتي للناقل، بما في ذلك عدم وجود اعتراضات، ثم قم بتعيين صفر لكل من المتغيرات. يجب أن يكون هناك تخصيص لكل من المتغيرات قبل أن يسمى أر. ويوضح هذا المثال المتجه Y (Y1 Y2 Y3) كدالة خطية فقط لقيمته في الفترتين السابقتين ومجهز خطأ ضوضاء أبيض. يحتوي النموذج على 18 (3 3 3 3) معلمات. بناء الجملة من ماكرو أر هناك حالتان من بناء الجملة لل ماكرو أر. عندما لا تكون هناك حاجة إلى قيود على عملية أر ناقلات، وبناء الجملة ماكرو أر الشكل العام يحدد بادئة أر لاستخدامها في بناء أسماء المتغيرات اللازمة لتحديد عملية أر. إذا لم يتم تحديد إندوليست، فإن القائمة الذاتية افتراضيا للاسم. والتي يجب أن تكون اسم المعادلة التي سيتم تطبيق عملية خطأ أر. لا يمكن أن تتجاوز قيمة الاسم 32 حرفا. هو ترتيب عملية أر. تحدد قائمة المعادلات التي ستطبق عليها عملية أر. إذا تم إعطاء أكثر من اسم واحد، يتم إنشاء عملية ناقلات غير مقيدة مع المخلفات الهيكلية من جميع المعادلات المدرجة على النحو المتراجعون في كل من المعادلات. إذا لم يتم تحديدها، افتراضيات إندوليست الاسم. يحدد قائمة التأخيرات التي ستضاف إليها مصطلحات أر. يتم تعيين معاملات المصطلحات في فترات التأخر غير المدرجة إلى 0. يجب أن تكون جميع الفواصل المدرجة أقل من أو تساوي نلاغ. ويجب ألا تكون هناك نسخ مكررة. إذا لم يتم تحديدها، الافتراضي لاغليست لجميع يتخلف 1 خلال نلاغ. يحدد طريقة التقدير لتنفيذها. والقيم الصالحة لل M هي كلس (تقديرات المربعات الصغرى المشروطة) و أولس (تقديرات المربعات الصغرى غير المشروطة) و مل (تقديرات الاحتمالات القصوى). مكلس هو الافتراضي. يسمح فقط مكلس عندما يتم تحديد أكثر من معادلة واحدة. ولا تدعم طرائق أر و نواقل أر من قبل أر. يحدد أن عملية أر يتم تطبيقها على المتغيرات الذاتية نفسها بدلا من المخلفات الهيكلية للمعادلات. تقييد الانتكاس التلقائي المقيد يمكنك التحكم في المعاملات التي يتم تضمينها في العملية، مع تقييد 0 تلك المعلمات التي لا تتضمنها. أولا، استخدم أر مع الخيار ديفر لإعلان قائمة المتغيرات وتحديد بعد العملية. ثم، استخدام المكالمات أر إضافية لتوليد مصطلحات للمعادلات المحددة مع المتغيرات المحددة في التأخر المحدد. وعلى سبيل المثال، فإن معادلات الخطأ المنتجة هي كما يلي: يشير هذا النموذج إلى أن أخطاء Y1 تعتمد على أخطاء كل من Y1 و Y2 (ولكن ليس Y3) عند كل من الفارقين 1 و 2، وأن الأخطاء في Y2 و Y3 تعتمد على الأخطاء السابقة لجميع المتغيرات الثلاثة، ولكن فقط في تأخر 1. أر بناء الجملة ماكرو للمتجهات المقيدة أر يسمح استخدام بديل من أر لفرض قيود على عملية أر المتجه عن طريق استدعاء أر عدة مرات لتحديد مصطلحات أر مختلفة والتخلف لمختلف المعادلات. المكالمة الأولى لها النموذج العام يحدد البادئة ل أر لاستخدامها في بناء أسماء المتغيرات اللازمة لتعريف عملية أر المتجهات. يحدد ترتيب عملية أر. تحدد قائمة المعادلات التي ستطبق عليها عملية أر. يحدد أن أر ليس لتوليد عملية أر ولكن الانتظار إلى مزيد من المعلومات المحددة في وقت لاحق أر يدعو لنفس القيمة الاسم. المكالمات اللاحقة لها الشكل العام هو نفسه كما في المكالمة الأولى. يحدد قائمة المعادلات التي ستطبق عليها المواصفات الواردة في نداء أر هذا. يمكن فقط أن تظهر الأسماء المحددة في قيمة إندوليست للمكالمة الأولى لقيمة الاسم في قائمة المعادلات في إكليست. تحدد قائمة المعادلات التي ستدرج مخلفاتها الهيكلية المتخلفة كمؤخرات في المعادلات في إكليست. يمكن فقط أن تظهر الأسماء في إندوليست المكالمة الأولى لقيمة الاسم في فارليست. إذا لم يحدد، افتراضات فارليست إلى إندوليست. يحدد قائمة التأخيرات التي ستضاف إليها مصطلحات أر. يتم تعيين معاملات المصطلحات عند التأخيرات غير المدرجة إلى 0. يجب أن تكون جميع الفواصل المدرجة أقل من أو تساوي قيمة نلاغ. ويجب ألا تكون هناك نسخ مكررة. إذا لم يتم تحديدها، لاغليست الافتراضية لجميع يتخلف 1 خلال نلاغ. ما ماكرو ساس ماكرو ماك يولد بيانات البرمجة ل بروك نموذج لنماذج المتوسط ​​المتحرك. ماكرو ما هو جزء من برنامج ساسيتس، ولا حاجة إلى خيارات خاصة لاستخدام الماكرو. ويمكن تطبيق عملية الخطأ المتوسط ​​المتوسط ​​على أخطاء المعادلة الهيكلية. بناء جملة ماكرو ما هو نفس الماكرو أر باستثناء عدم وجود وسيطة تايب. عندما كنت تستخدم ماك و أر وحدات الماكرو مجتمعة، ماكرو ما يجب اتباع ماكرو أر. تنتج عبارات ساسمل التالية عملية خطأ أرما (1، (1 3)) وحفظها في مجموعة البيانات مادات 2. وتستعمل عبارات بروك موديل التالية لتقدير معلمات هذا النموذج باستعمال أقصى بنية للخطأ المحتمل: وترد في الشكل 18.61 تقديرات المعلمات التي ينتجها هذا المدى. الشكل 18.61 تقديرات من أرما (1، (1 3)) العملية هناك حالتان من بناء الجملة ل ماكرو ما. عندما لا تكون هناك حاجة إلى قيود على عملية ما متجه، بناء جملة ماكرو ما النموذج العام يحدد بادئة ل ما لاستخدامها في بناء أسماء المتغيرات اللازمة لتعريف عملية ما وهو إندوليست الافتراضي. هو ترتيب عملية ما. يحدد المعادلات التي سيتم تطبيق عملية ما. إذا تم إعطاء أكثر من اسم واحد، يتم استخدام تقدير كلس لعملية المتجه. يحدد الفترات الزمنية التي ستضاف فيها مصطلحات ما. يجب أن تكون جميع الفترات المدرجة أقل من أو تساوي نلاغ. ويجب ألا تكون هناك نسخ مكررة. إذا لم يتم تحديدها، الافتراضي لاغليست لجميع يتخلف 1 خلال نلاغ. يحدد طريقة التقدير لتنفيذها. والقيم الصالحة لل M هي كلس (تقديرات المربعات الصغرى المشروطة) و أولس (تقديرات المربعات الصغرى غير المشروطة) و مل (تقديرات الاحتمالات القصوى). مكلس هو الافتراضي. يسمح فقط مكلس عندما يتم تحديد أكثر من معادلة واحدة في إندوليست. ما ماكرو سينتاكس فور كونستروكتد فيكتور موفينغ-أفيراج يسمح باستخدام بديل ل ما فرض قيود على عملية ما المتجه عن طريق استدعاء ما عدة مرات لتحديد شروط ما المختلفة والتخلف عن المعادلات المختلفة. المكالمة الأولى لديها النموذج العام يحدد بادئة ل ما لاستخدامها في بناء أسماء المتغيرات اللازمة لتعريف عملية ما المتجه. يحدد ترتيب عملية ما. يحدد قائمة المعادلات التي سيتم تطبيق عملية ما. يحدد أن ما ليس لتوليد عملية ما ولكن هو الانتظار للحصول على مزيد من المعلومات المحددة في ما لاحق يدعو لنفس القيمة الاسم. المكالمات اللاحقة لها الشكل العام هو نفسه كما في المكالمة الأولى. تحدد قائمة المعادلات التي ستطبق عليها المواصفات الواردة في هذه الدعوة. تحدد قائمة المعادلات التي ستدرج مخلفاتها الهيكلية المتخلفة كمؤخرات في المعادلات في إكليست. يحدد قائمة التأخيرات التي ستضاف إليها شروط ما. المتوسط ​​المتحرك ونماذج التمهيد الأسي كخطوة أولى في التحرك خارج النماذج المتوسطة، نماذج المشي العشوائي، ونماذج الاتجاه الخطي، يمكن استنباط أنماط واتجاهات غير تقليدية باستخدام الحركة - متوسط ​​أو تمهيد النموذج. الافتراض الأساسي وراء المتوسطات ونماذج التمهيد هو أن السلاسل الزمنية ثابتة محليا بمتوسط ​​متباين ببطء. ومن ثم، فإننا نأخذ متوسطا متحركا (محلي) لتقدير القيمة الحالية للمتوسط ​​ومن ثم استخدامه كمؤشر للمستقبل القريب. ويمكن اعتبار ذلك بمثابة حل توفيقي بين النموذج المتوسط ​​ونموذج المشي العشوائي بدون الانجراف. ويمكن استخدام نفس الاستراتيجية لتقدير الاتجاه المحلي واستقراءه. وعادة ما يطلق على المتوسط ​​المتحرك نسخة كوتسموثيدكوت من السلسلة الأصلية لأن المتوسط ​​على المدى القصير له تأثير على إزالة المطبات في السلسلة الأصلية. من خلال تعديل درجة التمهيد (عرض المتوسط ​​المتحرك)، يمكننا أن نأمل في ضرب نوع من التوازن الأمثل بين أداء المتوسط ​​و نماذج المشي العشوائي. أبسط نوع من نموذج المتوسط ​​هو. المتوسط ​​المتحرك البسيط (بالتساوي المرجح): تقدر قيمة قيمة Y في الوقت t1 التي يتم إجراؤها في الوقت t بالمتوسط ​​البسيط لآخر ملاحظات m: (هنا وفي مكان آخر سأستخدم الرمز 8220Y-hat8221 للوقوف للتنبؤ بالسلسلة الزمنية Y التي أجريت في أقرب موعد ممكن من قبل نموذج معين.) ويتركز هذا المتوسط ​​في الفترة t - (m1) 2، مما يعني أن تقدير المتوسط ​​المحلي سوف تميل إلى التخلف عن صحيح قيمة المتوسط ​​المحلي بنحو (m1) فترتين. وبالتالي، نقول أن متوسط ​​عمر البيانات في المتوسط ​​المتحرك البسيط هو (m1) 2 بالنسبة إلى الفترة التي يتم فيها احتساب التوقعات: هذا هو مقدار الوقت الذي تميل التنبؤات إلى التخلف عن نقاط التحول في البيانات . على سبيل المثال، إذا كنت تقوم بحساب متوسط ​​القيم الخمس الأخيرة، فإن التوقعات ستكون حوالي 3 فترات متأخرة في الاستجابة لنقاط التحول. ويلاحظ أنه في حالة M1، فإن نموذج المتوسط ​​المتحرك البسيط (سما) يساوي نموذج المشي العشوائي (بدون نمو). وإذا كانت m كبيرة جدا (مماثلة لطول فترة التقدير)، فإن نموذج سما يعادل النموذج المتوسط. وكما هو الحال مع أي معلمة لنموذج التنبؤ، من العرفي أن تعدل قيمة k من أجل الحصول على أفضل قيمة ممكنة للبيانات، أي أصغر أخطاء التنبؤ في المتوسط. وفيما يلي مثال لسلسلة يبدو أنها تظهر تقلبات عشوائية حول متوسط ​​متغير ببطء. أولا، يتيح محاولة لتناسب ذلك مع نموذج المشي العشوائي، وهو ما يعادل متوسط ​​متحرك بسيط من 1 مصطلح: نموذج المشي العشوائي يستجيب بسرعة كبيرة للتغيرات في هذه السلسلة، ولكن في ذلك يفعل ذلك يختار الكثير من كوتنويسكوت في البيانات (التقلبات العشوائية) وكذلك كوتسيغنالكوت (المتوسط ​​المحلي). إذا حاولنا بدلا من ذلك متوسط ​​متحرك بسيط من 5 مصطلحات، نحصل على مجموعة أكثر سلاسة من التوقعات: المتوسط ​​المتحرك البسيط لمدة 5 سنوات ينتج أخطاء أقل بكثير من نموذج المشي العشوائي في هذه الحالة. متوسط ​​عمر البيانات في هذه التوقعات هو 3 ((51) 2)، بحيث تميل إلى التخلف عن نقاط التحول بنحو ثلاث فترات. (على سبيل المثال، يبدو أن الانكماش قد حدث في الفترة 21، ولكن التوقعات لا تتحول حتى عدة فترات في وقت لاحق). لاحظ أن التوقعات على المدى الطويل من نموذج سما هي خط مستقيم أفقي، تماما كما في المشي العشوائي نموذج. وبالتالي، يفترض نموذج سما أنه لا يوجد اتجاه في البيانات. ومع ذلك، في حين أن التنبؤات من نموذج المشي العشوائي هي ببساطة مساوية للقيمة الملاحظة الأخيرة، والتنبؤات من نموذج سما يساوي المتوسط ​​المرجح للقيم الأخيرة. إن حدود الثقة المحسوبة من قبل ستاتغرافيكس للتنبؤات طويلة الأجل للمتوسط ​​المتحرك البسيط لا تتسع مع زيادة أفق التنبؤ. ومن الواضح أن هذا غير صحيح لسوء الحظ، لا توجد نظرية إحصائية أساسية تخبرنا كيف يجب أن تتسع فترات الثقة لهذا النموذج. ومع ذلك، ليس من الصعب جدا حساب التقديرات التجريبية لحدود الثقة للتنبؤات الأطول أجلا. على سبيل المثال، يمكنك إعداد جدول بيانات سيتم فيه استخدام نموذج سما للتنبؤ بخطوتين إلى الأمام، و 3 خطوات إلى الأمام، وما إلى ذلك ضمن عينة البيانات التاريخية. يمكنك بعد ذلك حساب الانحرافات المعيارية للعينة في كل أفق للتنبؤ، ومن ثم بناء فترات ثقة للتنبؤات الأطول أجلا عن طريق جمع وطرح مضاعفات الانحراف المعياري المناسب. إذا حاولنا متوسط ​​متحرك بسيط لمدة 9 سنوات، نحصل على توقعات أكثر سلاسة وأكثر تأثيرا متخلفا: متوسط ​​العمر هو الآن 5 فترات ((91) 2). إذا أخذنا متوسط ​​متحرك لمدة 19 عاما، فإن متوسط ​​العمر يزيد إلى 10: لاحظ أن التوقعات تتخلف الآن عن نقاط التحول بنحو 10 فترات. أي كمية من التجانس هو الأفضل لهذه السلسلة هنا جدول يقارن إحصاءات الخطأ، بما في ذلك أيضا متوسط ​​3 المدى: نموذج C، المتوسط ​​المتحرك لمدة 5 سنوات، ينتج أقل قيمة رمز بهامش صغير على 3 المتوسطات و 9-المدى، وإحصاءاتهم الأخرى متطابقة تقريبا. لذلك، من بين نماذج مع إحصاءات الخطأ مشابهة جدا، يمكننا أن نختار ما إذا كنا نفضل استجابة أكثر قليلا أو أكثر قليلا نعومة في التوقعات. (العودة إلى أعلى الصفحة.) براونز بسيط الأسي تمهيد (المتوسط ​​المتحرك المرجح أضعافا) نموذج المتوسط ​​المتحرك البسيط المذكورة أعلاه لديه الخاصية غير المرغوب فيها أنه يعامل الملاحظات k الماضية بالتساوي تماما ويتجاهل جميع الملاحظات السابقة. بشكل حدسي، يجب أن يتم خصم البيانات السابقة بطريقة أكثر تدرجية - على سبيل المثال، يجب أن تحصل على الملاحظة الأخيرة أكثر قليلا من الوزن الثاني من أحدث، و 2 أحدث يجب الحصول على وزن أكثر قليلا من 3 أحدث، و هكذا. نموذج التمهيد الأسي بسيط (سيس) يحقق هذا. اسمحوا 945 تدل على كونتسموثينغ كونستانتكوت (عدد بين 0 و 1). طريقة واحدة لكتابة النموذج هو تعريف سلسلة L التي تمثل المستوى الحالي (أي القيمة المتوسطة المحلية) من السلسلة كما يقدر من البيانات حتى الوقت الحاضر. يتم حساب قيمة L في الوقت t بشكل متكرر من قيمته السابقة مثل هذا: وهكذا، فإن القيمة الملساء الحالية هي الاستكمال الداخلي بين القيمة الملساء السابقة والمراقبة الحالية، حيث 945 تسيطر على التقارب من قيمة محرف إلى الأحدث الملاحظة. التوقعات للفترة القادمة هي ببساطة القيمة الملساء الحالية: على نحو مماثل، يمكننا التعبير عن التوقعات القادمة مباشرة من حيث التوقعات السابقة والملاحظات السابقة، في أي من الإصدارات المكافئة التالية. في النسخة الأولى، والتنبؤ هو الاستيفاء بين التوقعات السابقة والملاحظة السابقة: في النسخة الثانية، ويتم الحصول على التوقعات القادمة عن طريق ضبط التوقعات السابقة في اتجاه الخطأ السابق من قبل كمية كسور 945. هو الخطأ المحرز في الوقت t. أما في النسخة الثالثة، فإن التنبؤ هو المتوسط ​​المتحرك المرجح ألسعاره (أي مخفضة) مع عامل الخصم 1- 945: إصدار الاستكمال الداخلي لصيغة التنبؤ هو أبسط الاستخدام إذا كنت تنفذ النموذج على جدول بيانات: خلية واحدة ويحتوي على مراجع الخلية مشيرا إلى التوقعات السابقة، الملاحظة السابقة، والخلية حيث يتم تخزين قيمة 945. لاحظ أنه إذا كان 945 1، فإن نموذج سيس يساوي نموذج المشي العشوائي (بدون نمو). وإذا كان 945 0، فإن نموذج سيس يعادل النموذج المتوسط، على افتراض أن القيمة الملساء الأولى موضوعة تساوي المتوسط. (العودة إلى أعلى الصفحة). يبلغ متوسط ​​عمر البيانات في توقعات التمهيد الأسي البسيط 945 1 بالنسبة للفترة التي يتم فيها حساب التوقعات. (وهذا ليس من المفترض أن يكون واضحا، ولكن يمكن بسهولة أن تظهر من خلال تقييم سلسلة لانهائية). وبالتالي، فإن متوسط ​​المتوسط ​​المتحرك بسيط يميل إلى التخلف عن نقاط التحول بنحو 1 945 فترات. على سبيل المثال، عندما يكون 945 0.5 الفارق الزمني هو فترتين عندما يكون 945 0.2 الفارق الزمني هو 5 فترات عندما يكون 945 0.1 الفارق الزمني هو 10 فترات، وهكذا. وبالنسبة إلى متوسط ​​عمر معين (أي مقدار التأخير)، فإن توقعات التمهيد الأسي البسيط تفوق إلى حد ما توقعات المتوسط ​​المتحرك البسيط (سما) لأنها تضع وزنا أكبر نسبيا على الملاحظة الأخيرة - أي. هو أكثر قليلا كوريبرسونسيفكوت إلى التغييرات التي تحدث في الماضي القريب. على سبيل المثال، نموذج سما مع 9 شروط ونموذج سيس مع 945 0.2 على حد سواء لديها متوسط ​​عمر 5 للبيانات في توقعاتها، ولكن نموذج سيس يضع وزنا أكبر على القيم 3 الماضية مما يفعل نموذج سما وفي في الوقت نفسه فإنه don8217t تماما 8220forget8221 حول قيم أكثر من 9 فترات القديمة، كما هو مبين في هذا المخطط: ميزة أخرى هامة من نموذج سيس على نموذج سما هو أن نموذج سيس يستخدم معلمة تمهيد التي هي متغيرة باستمرار، لذلك يمكن بسهولة الأمثل باستخدام خوارزمية كوتسولفيركوت لتقليل متوسط ​​الخطأ التربيعي. وتبين القيمة المثلى ل 945 في نموذج سيس لهذه السلسلة 0.2961، كما هو مبين هنا: متوسط ​​عمر البيانات في هذا التنبؤ هو 10.2961 3.4 فترات، وهو ما يشبه متوسط ​​المتوسط ​​المتحرك البسيط لمدة 6. والتنبؤات الطويلة الأجل من نموذج الخدمة الاقتصادية والاجتماعية هي خط مستقيم أفقي. كما هو الحال في نموذج سما ونموذج المشي العشوائي دون نمو. ومع ذلك، لاحظ أن فترات الثقة التي يحسبها ستاتغرافيكس الآن تتباعد بطريقة معقولة المظهر، وأنها هي أضيق بكثير من فترات الثقة لنموذج المشي العشوائي. ويفترض نموذج سيس أن المسلسل إلى حد ما يمكن التنبؤ به أكثر من ذلك لا نموذج المشي العشوائي. نموذج سيس هو في الواقع حالة خاصة من نموذج أريما. وبالتالي فإن النظرية الإحصائية لنماذج أريما توفر أساسا سليما لحساب فترات الثقة لنموذج سيس. على وجه الخصوص، نموذج سيس هو نموذج أريما مع اختلاف واحد غير منطقي، وهو ما (1) المدى، وليس هناك مصطلح ثابت. والمعروف باسم كوتاريما (0،1،1) نموذج دون كونستانتكوت. معامل ما (1) في نموذج أريما يتوافق مع الكمية 1- 945 في نموذج سيس. على سبيل المثال، إذا كنت تناسب نموذج أريما (0،1،1) دون ثابت لسلسلة تحليلها هنا، فإن ما المقدرة (1) معامل تبين أن يكون 0.7029، وهو تقريبا تقريبا واحد ناقص 0.2961. ومن الممكن إضافة افتراض اتجاه خطي ثابت غير صفري إلى نموذج سيس. للقيام بذلك، مجرد تحديد نموذج أريما مع اختلاف واحد نونسونالونال و ما (1) المدى مع ثابت، أي أريما (0،1،1) نموذج مع ثابت. وعندئذ سيكون للتنبؤات الطويلة الأجل اتجاه يساوي متوسط ​​الاتجاه الذي لوحظ خلال فترة التقدير بأكملها. لا يمكنك القيام بذلك بالتزامن مع التعديل الموسمية، لأن خيارات التعديل الموسمية يتم تعطيل عند تعيين نوع النموذج إلى أريما. ومع ذلك، يمكنك إضافة اتجاه أسي ثابت على المدى الطويل إلى نموذج بسيط الأسي تمهيد (مع أو بدون تعديل موسمي) باستخدام خيار تعديل التضخم في إجراء التنبؤ. ويمكن تقدير معدل كوتينفلاتيونكوت المناسب (نسبة النمو) لكل فترة على أنها معامل الانحدار في نموذج الاتجاه الخطي المجهز بالبيانات بالتزامن مع تحول لوغاريتم طبيعي، أو يمكن أن يستند إلى معلومات مستقلة أخرى تتعلق باحتمالات النمو على المدى الطويل . (العودة إلى أعلى الصفحة). البني الخطي (أي مزدوج) تجانس الأسي نماذج سما ونماذج سيس تفترض أنه لا يوجد أي اتجاه من أي نوع في البيانات (التي عادة ما تكون موافق أو على الأقل ليست سيئة جدا لمدة 1- والتنبؤ بالمتابعة عندما تكون البيانات صاخبة نسبيا)، ويمكن تعديلها لإدراج اتجاه خطي ثابت كما هو مبين أعلاه. ماذا عن الاتجاهات على المدى القصير إذا كانت سلسلة يعرض معدل نمو متفاوت أو نمط دوري الذي يبرز بوضوح ضد الضوضاء، وإذا كان هناك حاجة للتنبؤ أكثر من 1 فترة المقبلة، ثم قد يكون تقدير الاتجاه المحلي أيضا قضية. ويمكن تعميم نموذج التمهيد الأسي البسيط للحصول على نموذج التمهيد الأسي الخطي (ليس) الذي يحسب التقديرات المحلية لكل من المستوى والاتجاه. أبسط نموذج الاتجاه المتغير بمرور الوقت هو نموذج تمهيد الأسي الخطي براون، والذي يستخدم سلسلتين مختلفتين تمهيدهما تتمركزان في نقاط مختلفة من الزمن. وتستند صيغة التنبؤ إلى استقراء خط من خلال المركزين. (ويمكن مناقشة الشكل الأكثر تطورا من هذا النموذج، هولت 8217s أدناه). ويمكن التعبير عن شكل جبري من نموذج التجانس الأسي الخطي البني 8217s، مثل نموذج التجانس الأسي البسيط، في عدد من الأشكال المختلفة ولكن المكافئة. The quotstandardquot form of this model is usually expressed as follows: Let S denote the singly-smoothed series obtained by applying simple exponential smoothing to series Y. That is, the value of S at period t is given by: (Recall that, under simple exponential smoothing, this would be the forecast for Y at period t1.) Then let Squot denote the doubly-smoothed series obtained by applying simple exponential smoothing (using the same 945 ) to series S: Finally, the forecast for Y tk . for any kgt1, is given by: This yields e 1 0 (i. e. cheat a bit, and let the first forecast equal the actual first observation), and e 2 Y 2 8211 Y 1 . after which forecasts are generated using the equation above. This yields the same fitted values as the formula based on S and S if the latter were started up using S 1 S 1 Y 1 . This version of the model is used on the next page that illustrates a combination of exponential smoothing with seasonal adjustment. Holt8217s Linear Exponential Smoothing Brown8217s LES model computes local estimates of level and trend by smoothing the recent data, but the fact that it does so with a single smoothing parameter places a constraint on the data patterns that it is able to fit: the level and trend are not allowed to vary at independent rates. Holt8217s LES model addresses this issue by including two smoothing constants, one for the level and one for the trend. At any time t, as in Brown8217s model, the there is an estimate L t of the local level and an estimate T t of the local trend. Here they are computed recursively from the value of Y observed at time t and the previous estimates of the level and trend by two equations that apply exponential smoothing to them separately. If the estimated level and trend at time t-1 are L t82091 and T t-1 . respectively, then the forecast for Y tshy that would have been made at time t-1 is equal to L t-1 T t-1 . When the actual value is observed, the updated estimate of the level is computed recursively by interpolating between Y tshy and its forecast, L t-1 T t-1, using weights of 945 and 1- 945. The change in the estimated level, namely L t 8209 L t82091 . can be interpreted as a noisy measurement of the trend at time t. The updated estimate of the trend is then computed recursively by interpolating between L t 8209 L t82091 and the previous estimate of the trend, T t-1 . using weights of 946 and 1-946: The interpretation of the trend-smoothing constant 946 is analogous to that of the level-smoothing constant 945. Models with small values of 946 assume that the trend changes only very slowly over time, while models with larger 946 assume that it is changing more rapidly. A model with a large 946 believes that the distant future is very uncertain, because errors in trend-estimation become quite important when forecasting more than one period ahead. (Return to top of page.) The smoothing constants 945 and 946 can be estimated in the usual way by minimizing the mean squared error of the 1-step-ahead forecasts. When this done in Statgraphics, the estimates turn out to be 945 0.3048 and 946 0.008 . The very small value of 946 means that the model assumes very little change in the trend from one period to the next, so basically this model is trying to estimate a long-term trend. By analogy with the notion of the average age of the data that is used in estimating the local level of the series, the average age of the data that is used in estimating the local trend is proportional to 1 946, although not exactly equal to it. In this case that turns out to be 10.006 125. This isn8217t a very precise number inasmuch as the accuracy of the estimate of 946 isn8217t really 3 decimal places, but it is of the same general order of magnitude as the sample size of 100, so this model is averaging over quite a lot of history in estimating the trend. The forecast plot below shows that the LES model estimates a slightly larger local trend at the end of the series than the constant trend estimated in the SEStrend model. Also, the estimated value of 945 is almost identical to the one obtained by fitting the SES model with or without trend, so this is almost the same model. Now, do these look like reasonable forecasts for a model that is supposed to be estimating a local trend If you 8220eyeball8221 this plot, it looks as though the local trend has turned downward at the end of the series What has happened The parameters of this model have been estimated by minimizing the squared error of 1-step-ahead forecasts, not longer-term forecasts, in which case the trend doesn8217t make a lot of difference. If all you are looking at are 1-step-ahead errors, you are not seeing the bigger picture of trends over (say) 10 or 20 periods. In order to get this model more in tune with our eyeball extrapolation of the data, we can manually adjust the trend-smoothing constant so that it uses a shorter baseline for trend estimation. For example, if we choose to set 946 0.1, then the average age of the data used in estimating the local trend is 10 periods, which means that we are averaging the trend over that last 20 periods or so. Here8217s what the forecast plot looks like if we set 946 0.1 while keeping 945 0.3. This looks intuitively reasonable for this series, although it is probably dangerous to extrapolate this trend any more than 10 periods in the future. What about the error stats Here is a model comparison for the two models shown above as well as three SES models. The optimal value of 945.for the SES model is approximately 0.3, but similar results (with slightly more or less responsiveness, respectively) are obtained with 0.5 and 0.2. (A) Holts linear exp. smoothing with alpha 0.3048 and beta 0.008 (B) Holts linear exp. smoothing with alpha 0.3 and beta 0.1 (C) Simple exponential smoothing with alpha 0.5 (D) Simple exponential smoothing with alpha 0.3 (E) Simple exponential smoothing with alpha 0.2 Their stats are nearly identical, so we really can8217t make the choice on the basis of 1-step-ahead forecast errors within the data sample. We have to fall back on other considerations. If we strongly believe that it makes sense to base the current trend estimate on what has happened over the last 20 periods or so, we can make a case for the LES model with 945 0.3 and 946 0.1. If we want to be agnostic about whether there is a local trend, then one of the SES models might be easier to explain and would also give more middle-of-the-road forecasts for the next 5 or 10 periods. (Return to top of page.) Which type of trend-extrapolation is best: horizontal or linear Empirical evidence suggests that, if the data have already been adjusted (if necessary) for inflation, then it may be imprudent to extrapolate short-term linear trends very far into the future. Trends evident today may slacken in the future due to varied causes such as product obsolescence, increased competition, and cyclical downturns or upturns in an industry. For this reason, simple exponential smoothing often performs better out-of-sample than might otherwise be expected, despite its quotnaivequot horizontal trend extrapolation. Damped trend modifications of the linear exponential smoothing model are also often used in practice to introduce a note of conservatism into its trend projections. The damped-trend LES model can be implemented as a special case of an ARIMA model, in particular, an ARIMA(1,1,2) model. It is possible to calculate confidence intervals around long-term forecasts produced by exponential smoothing models, by considering them as special cases of ARIMA models. (Beware: not all software calculates confidence intervals for these models correctly.) The width of the confidence intervals depends on (i) the RMS error of the model, (ii) the type of smoothing (simple or linear) (iii) the value(s) of the smoothing constant(s) and (iv) the number of periods ahead you are forecasting. In general, the intervals spread out faster as 945 gets larger in the SES model and they spread out much faster when linear rather than simple smoothing is used. This topic is discussed further in the ARIMA models section of the notes. (Return to top of page.)8.4 Moving average models Rather than use past values of the forecast variable in a regression, a moving average model uses past forecast errors in a regression-like model. y c et theta e theta e dots theta e , where et is white noise. We refer to this as an MA(q) model . Of course, we do not observe the values of et, so it is not really regression in the usual sense. Notice that each value of yt can be thought of as a weighted moving average of the past few forecast errors. However, moving average models should not be confused with moving average smoothing we discussed in Chapter 6. A moving average model is used for forecasting future values while moving average smoothing is used for estimating the trend-cycle of past values. Figure 8.6: Two examples of data from moving average models with different parameters. Left: MA(1) with y t 20e t 0.8e t-1 . Right: MA(2) with y t e t - e t-1 0.8e t-2 . In both cases, e t is normally distributed white noise with mean zero and variance one. Figure 8.6 shows some data from an MA(1) model and an MA(2) model. Changing the parameters theta1,dots, thetaq results in different time series patterns. As with autoregressive models, the variance of the error term et will only change the scale of the series, not the patterns. It is possible to write any stationary AR(p) model as an MA(infty) model. For example, using repeated substitution, we can demonstrate this for an AR(1) model : begin yt amp phi1y et amp phi1(phi1y e ) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext end Provided -1 lt phi1 lt 1, the value of phi1k will get smaller as k gets larger. So eventually we obtain yt et phi1 e phi12 e phi13 e cdots, an MA(infty) process. The reverse result holds if we impose some constraints on the MA parameters. Then the MA model is called invertible. That is, that we can write any invertible MA(q) process as an AR(infty) process. Invertible models are not simply to enable us to convert from MA models to AR models. They also have some mathematical properties that make them easier to use in practice. The invertibility constraints are similar to the stationarity constraints. For an MA(1) model: -1lttheta1lt1. For an MA(2) model: -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. More complicated conditions hold for qge3. Again, R will take care of these constraints when estimating the models.

Comments